IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Electron paramagnetic resonance governed by the Dzyaloshinsky - Moriya antisymmetric

exchange interaction in CueQs

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1996 J. Phys.: Condens. Matter 8 2625
(http://iopscience.iop.org/0953-8984/8/15/012)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.208
The article was downloaded on 13/05/2010 at 16:31

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/8/15
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys.: Condens. Matt8r(1996) 2625-2640. Printed in the UK

Electron paramagnetic resonance governed by the
Dzyaloshinsky—Moriya antisymmetric exchange interaction
in CuGeOs3

| Yamaddg, M Nishif and J Akimits§
1 Department of Physics, Faculty of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba 263,

Japan

1 The Institute for Solid State Physics, The University of Tokyo, Roppongi, Minato-ku, Tokyo
106, Japan

& Department of Physics, Aoyama-Gakuin University, 6-16-1 Chitosedai, Setagaya-ku, Tokyo
157, Japan

Received 30 November 1995

Abstract. Several reports of electron paramagnetic resonance experiments performed on the
spin—Peierls compound CuGg®ave appeared so far, but none of them have precisely explained
the origin of the line broadening and the temperature dependence of both the linewidth and the
resonance field, all of which differ from those of conventional one-dimensional Heisenberg
antiferromagnets in which the dipolar or anisotropic exchange interaction brings about line
broadening. In the present report, it is clarified that the antisymmetric exchange interaction,
> diiy1+(S; x Sip1) with dj;1 L c-axis (magnetic chain), between nearest-neighbour Cu
spins on thec-axis governs all factors which characterize the EPR line of CuG&®., the

value and the angular dependence of the linewidth at high temperatures where the short-range
order is completely absent, the temperature dependence of the linewidth, and the resonance
field, as well as the high-temperature lineshape. The present conclusion indicates that the
crystal symmetry of this compound is lower than that given by the space gtéupn which

was reported by Wllenkle et al in 1967, because the symmetBbmm does not allow the
antisymmetric exchange interaction mentioned above.

1. Introduction

The spin—Peierls compound CuGghas recently attracted much attention. This compound
was found to form linear Heisenberg antiferromagnetic chains along-#xés, and to turn

into the spin—Peierls state beldy, = 14 K [1]. Many studies on this compound have been
reported so far. Among them, several electron paramagnetic resonance (EPR) investigations
are included [2-6]. The experimental results given in them are summarized as follows. The
linewidth A H which reaches approximately 1-2 kOe at room temperature decreases very
rapidly with decreasing temperature, but it does not increase over the short-range ordering
region. In contrast taoA H versus temperaturé, the resonance field s does not change

with T aboveTs, Although these results are common to all reports except one [3], precise
explanations for the respective results were not given.

The EPR experimental results summarized above are not similar to those of conventional
one-dimensional Heisenberg antiferromagnets (1DHAF) such as TMMC [7-9] and CsMnClI
2H,0 [9-11]; the characteristics of the EPR line of these well investigated 1DHAFs are
summarized as follows.
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(i) The lineshape at highl" departs from the Lorentzian shape; highmeans the
temperature region where the short-range order is completely absent.

(i) The angular dependence ofH at highT obeys a relation such &8 cog 6 — 1)%/3,
where6 is an angle between the chain axis and an external field.

(iii) Over the short-range ordering region,H increases with decreasirg

(iv) Over the short-range ordering regiorf.s for external fields parallel and
perpendicular to the chain axis shift from those observed at fiigh directions opposite
to each other.

Phenomena (i) and (ii) are due to the long-time diffusive relaxation process [7]. That
is, only long-wavelengthq ~ 0) spin fluctuations survive over the %2 part of the
relaxation process. As a result, contribution from the- 0 components of the secular
parts of the perturbation terms to line broadening is enhanced, which brings about the
(3cog 0 —1)*3-like angular change in the linewidth, as well as a non-Lorentzian lineshape.
When T is decreased, th¢g| ~ m/a spin fluctuations take the place qf ~ O over
the short-range ordering region (wheig is the spin—spin distance in the chain), which
then causes the phenomenon (iii). The crossover fepmy 0 to |q] ~ 7/a appears
in AH(T) more clearly in 1DHAFs with Ci# compounds such as CyCENCsHs [12]
and CyCgHs5COO), - 3H,0 [13] than in the MA" compounds introduced above. That
is, AH(T) in the C#* compounds first decreases gradually with decreagirand then
begins to increase rapidly over the short-range ordering region, WHe¢T) in the Mre*
compounds is first almost constant and begins to increase with decrdaskygrthermore,
the increase of the two-spin correlations over the short-range ordering region dffggts
which results in (iv), as was proven in [9].

Considering thatA H and H,es of the EPR line depend on the perturbation terms, one
must remember that the phenomena given by (i)—(iv) are due to spin-symmetric perturbation
terms such as the dipole—dipole (DD) and the anisotropic exchange (AE) interactions, i.e.,
the perturbation terms in which the coefficients of two-spin interactions are not related to
exchanging relevant spins with each other.

When the perturbation consists of a spin-antisymmetric interaction such as the
Dzyaloshinsky—Moriya (DM) exchange interaction, the dependencea Bf and H.s on
T is quite different from that of spin-symmetric ones, as will be explained later. Therefore,
one must first clarify what kinds of perturbation are the leading term for the line broadening
in an analysis of EPR data. The EPR studies [2—6] on CuyQ®aéntioned above did not
address this indispensable process.

In the present study, attention is solely given to the paramagnetic region, and it is
made clear from our EPR data that the DM interactpii d;; 1+ (S; x S;;1) between
nearest-neighbour Cu spins on thexis governs the EPR absorption line of CuGeO
That is, AH(T) and Hes(T), as well as the value oAH and the lineshape at high,
are well explained when the DM interaction is considered as a main perturbation term.
From the analysis of the angular dependenceAdf at high 7', the direction ofd;; 1
is determined to be perpendicular to thexis. Based on the fact that CuGg6hould
have DM interaction between the spins along thaxis, it is concluded that the crystal
symmetry of this compound proposed byl\énkle et al [14] about three decades ago that
has been accepted so far is not correct, because this symmetry has an inversion centre at
the midpoint between nearest-neighboufCsites on the--axis, which does not allow the
DM interaction.

The outline of this paper is as follows. The experimental results and theoretical
background which is necessary to analyse them are given in sections 2 and 3, successively.
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Analysis and discussion are developed in section 4. In section 5, it is pointed out that the
crystal symmetry of this compound must be lower than that given in [14].

2. Experimental results

EPR measurements for single crystals of Cuge@re made using a 100 kHz field-
modulated K-band spectrometer operated at 24.48 GHz. For the measurements below
room temperature, a resonance cavity was inserted in a liquid-He cryostat. Above room
temperature, a water-cooled cavity was employed, using a platinum-strip-coated quartz tube
inserted in the cavity as a resistive heater. Each cavity had a sample rotation mechanism
around a vertical axis, an@ was electronically controlled. Resonance absorption was
recorded as a derivative line.
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Figure 1. The dependence of derivative peak-to-peak linewidth on temperature observed at
24.48 GHz forH|a-, b-, and c-axes. The lower-temperature part is enlarged in the inset,
where the extrapolation ok H (T') from the paramagnetic region seems to go down to zero with

T — 0.

Figure 1 shows thel' dependence of the derivative peak-to-peak linewidtHg,,
AHé’p, and A Hg, obtained for an external fieldl applied along the:-, b-, and c-axis,
respectively. As can be seen in this figure, they nearly saturate above approximately
600 K, which indicate that the theory for high developed in subsection 3.1 below can
be applied to the data obtained above this temperature. Furthermore, one finds the relation
AHS, < AHS, =~ AHF’,’p. The angular dependence &fHp, observed on rotating the
direction of H in the bc- andac-planes is shown in figure 2.

From the results shown in figures 1 and 2, several striking features can be pointed out.

First, the values oA Hy, at high T for all directions of H are extremely large, in spite of
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Figure 2. The angular dependence of linewidth at 800 K where the theory forhigaveloped
in subsection 3.1 can be applied, as well as that observed at 290 K. For both temperatures, the

ratio AHb/AHS, ~ AHS,/AHS, ~ 1.5 is found.

the fact that the absorption line is strongly exchange narrowed. Sedofidf}, < A Hg, or
(AHpbp), i.e., AHp, for H applied along the chain axis is narrower than thatfbrapplied

perpendicular to the chain axis, and it seems asHfpp(6) o (2+ sir? 9) for the direction

of H rotated in both theic- and bc-planes. This angular dependence is in contrast to
that of conventional 1DHAFs in which the DD and AE interactions are the main origin
of line broadening. ThirdA Hpp(T') for all directions of H decreases monotonically with
decreasingl’, and does not show any increase over the short-range ordering region.

To examine the lineshape at high the derivative absorption line foH ||c-axis is
analysed. The result for the line observed at 495 K which is high enough for the analysis is
shown in figure 3. The figure with an ordinate and an abscissa given as figure 3 is convenient,
because a Lorentzian lineshape is reproduced as a straight line, as first introduced in [7]. The
experimental data plotted in figure 3 coincide well with the straight line that is derived from
the Lorentzian. Thus, the observed lineshape is defined to be a Lorentzian. For reference,
the lineshape which arises from the spin-diffusion process is also given in figure 3.

Finally, the T dependence of the resonance fielfles, is shown in figure 4. In the
figure, the values of{,es — Hpppy are plotted as a function &f, where Hpppy is the field
that corresponds tg = 2.00. One finds that the distribution df,es — Hpppy iS Within
+10 Oe forT > Tgp, Which indicates that,es is not related to the change &t This result
is also different from that of conventional 1DHAFs with spin-symmetric perturbations, as
will be clarified in subsection 3.4.

3. Theoretical background

Several years ago, one of the present authors (1Y) and coworkers [15, 16] clarified that all
factors of the EPR line observed in KGyjRwvhich is known as one of the representative
1DHAFs, are wholly due to the DM interaction. However, the analysis given in [15]
is insufficient. Therefore, a theory for the EPR line governed by the DM interaction is
developed here.
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Figure 3. The lineshape observed at 495 K. The solid straight line corresponds to a Lorentzian,
while the dotted line is derived from the Fourier transform of @x3/2), which indicates a
lineshape due to the spin-diffusion process. The fatt@h) is the height of the derivative line.

3.1. The linewidth at the high-temperature limit (& o0)

In this subsection, formulae which are necessary to analyse the linewidth as well as
its angular dependence at high are derived. An EPR line of an exchange-coupled
magnetic system can be analysed using the Kubo-Tomita theory [17]. In the following,
the Hamiltonian defined as

H=Ho+H 1)

is used, where the main terfrdy consists of the isotropic exchange between spins on the
chain along the--axis and Zeeman interactions, which is expressed as

Ho=Hex+Hz=-2J ) S;-Siy1—ps Y Si-g-H )

where g is a g-tensor. The perturbatiof!’ contains all other terms that cause the line
broadening such as the DD, AE, and DM interactions.

At the beginning of the analysis, the DM interaction will be clarified as being a leading
perturbation in CuGe® SinceS = 1/2 in this compound, a single-ion anisotropy is
completely absent. The hyperfine interaction also contributes to the line broadening, but its
effect is negligible. Thus, the DD and AE interactions, as well as the DM interaction, are
candidates for line broadening, i.e.,

H' = Hpp + Hpg + Hom- 3

In the present compound, the intrachain Cu—Cu distance is fairly short as compared with
those of the interchain ones. Thus, it is enough to count only the spins anakis for

bp- Furthermore, botl#,c and Hpy, arise from the intrachain exchange interaction,
because interchain exchange interactions are extremely weak. Explicit values of the lattice
parameters, as well as the intrachain and interchain exchange interactions, will be given in
section 4.
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Figure 4. The dependence of resonance field on temperature observed at 24.48 GHz. The
values ofHres — HpppH are plotted, wheréipppy is the resonance field that corresponds to the

g = 2 line. The abscissa is common féf ||a-, b-, andc-axes. From these datg, = 2.15,

g = 2.24, andg. = 2.06 are calculated.

The EPR absorption liné(w — wg) at a frequencyw is given by the Fourier transform
of () as

I(@—wo) = / o (1) explitew — woyr] dr @

wherewy is the angular resonance frequency, arid is a relaxation function expressed as

(1L~4+(t)1l4_(0))
o) = ——— 77, 5
@) (M M_) ©)

In the above,l\7l+(t) is an interaction representation amt, = gug ) ; Sf. The relaxation
function ¢(¢) is expressed by the correlation function

([H'(v), M (0)][M_(0), H'(0)])
2 (M M_)

W(z) = (6)

as

) = exp[ - /O (t — DWY(7) dr] (7
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where

H(l’) = exp( 70 )H(O) exp('HO ) (8)

When spin-diffusional relaxation is not effective(r) is approximated as

pt) = exp( —t /0 Y(r) dr) = exp[~tP(0) ] 9

with a characteristic time, ~ %/|J|. The function(0) corresponds to the second moment
M,(J/kT). The absorption line observed by fixing a microwave frequency and sweeping
an external field has&\ H which is approximated as
h?
H ~ M,(J/kT) Oe (10)
gurslJ|

When the spin-diffusion process is effective, the approximate evaluati@gnzbfgiven
by equation (10) collapses, as intensively developed earlier [7, 18]. As will be clarified later
in subsection 3.3, the spin-diffusion process has no effect on the EPR line governed by the
DM interaction. Therefore, there is no problem with using equations (9) and (10) as long
as Hpy is a leading term irf{’. Since the treatment of symmetric terms in 1DHAFs is
established [7, 17, 18], only that &1, is presented here.

To see the value and angular dependenceAdf at high T, Mo(J/kT — 0) is
calculated. The process to deriwé;(J/kT) is as follows. Two coordinate systems are
employed. One isX Y Z] which are fixed to the crystal axes § c] with Z||c, while the
other one is f y z] defined with H||z. The polar and azimuthal angles &f with respect
to thec-axis aref and¢, respectively.

The termHp,, is decomposed into the secular and non-secular parts as

om(t =0) = ZdiiJrl'(Si x Sit1)
= Z ZA,,H(S"‘ P— S8y = GO + GV (0) + GPY(0) (12)

whered;iy1 = (d},,,d} ,.d%,)), anda, B = +, —, z. Expressions of the secular part
GM(0) and the non-secular par&>Y (0) are

G(?M (O) 7' Z )‘11+l(S+ i+1 S_Sl-:-l)

GM(0) = > Z()\’fli‘rl M) (SESi =SS (12)
1 Ly oz

G0 = Z()wurl + 258 iy — 5780

in which
ll+l - dzz+1 sing COS¢ d i+1 sin® + dll+1 cosf

)m+1 = djj,1Sing — d;j , COSP (13)
= d},,cosdcosp +d;,, cosdsing —dZ.; sinf.

tl+l - i
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From equations (12),,(0) = [GPM(0), M, (0)] for m = 0, 1, and—1 are calculated as
%0(0) = ZAE?L(S* f =SS
21(0) = (14)

g,l(O) ZAt(Hrl;. t+l S SHrl)

where
A9 =igugr® ACY = W +inE ) (15)
i1 =18UB zl+l i+l = ngB i1 i+l
and Af:”jl does not depend oh From equation (6), the second momedf™ (J/kT) is
given by
M (J/KT) = (Z<gm (0)n(0)' >>/EZ<M+M>. (16)

Applying equation (14) tdg,,(0)g,(0)), one finds that
(20(0)20(0)') = ZAS?11<A3+1> (S S — SPS7D (S 8541 — S787,0)

17)
(8-1(00g-10") = > AHA ST Sy — S8, — 7S,
i,j
Counting onlyi = j terms in equations (17), and using a decoupling scheme for four-
spin correlation functions, one can calculal@”‘" (0). In the calculation, the isotropy of
correlations is assumed, and then relatibA&, M_) = 2Nh?g?u3S(S + 1)/3 which is
satisfied at high”” and (S;"S;") = 2((Sf)2) = 25(S + 1)/3 are used. The result is

MEM(0) = (1/37%)|d;i11]?S(S + 1)(1 + cos 6) whend;;,1|| chain axis (18)
or
DM (0) = (1/61?)|d;;i11|?S(S + 1)(2 + sir 9) whend,; ;1 L chain axis. (19)
The other two perturbations
) 1 3(S;-1ij)(S;-7ij)
Hop =84 Y 5 |:Si -Sj — ’2”] (20)
i~ lij Tij

and

Hpe = Z Si- Aiiy1-Siv1 (21)
with diagonal components of the tensdr; 1 as (A}, ,, Al ;. A%, ) = (A, A, —2A), are

familiar and have been intensively treated. Their respective second moments are

DD 384:“% 12
M5P(0) = = 5 (ZS) S(S + 1)(1+ cog6) (22)
i>j ij
MYE(0) = %AZS(S + 1)(1+4 cog0). (23)

Strictly speaking, the angular part in equation (23) is not exact for CyGe€rause the
principal axes of the Cufoctahedron do not coincide with the/c]-axes. However,
estimation of the value of¥,2€(0) is possible without knowing the precise angular
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dependence oM5E(0). In M2P(0) and M5F(0) given above, both the secular and non-
secular parts are included. It can exactly be shown that a cross term bét{ygeandH,

(or H)g) is absent, but the cross term betwekfy, andH,: yields an additional second
moment

1 1

ME™S%0) = WAgzué<Z g)S(S + 1) Ang(6) (24)
i>j "ij

where Angf) indicates an angular-dependent part. Using the formulaeM§M(0),

MPP(0), and M5E(0) given above, one can estimate the contribution of respective second
moments to the EPR linewidth observed at high

3.2. The temperature dependence of the linewidth

Based on equation (6), a theory which qualitatively explains Thdependence oA H
observed in the present compound is developed. For conveni&gds, used instead of
Tsp in subsections 3.2 and 3.4. ThHedependence oA H arises from that of\f,(J/kT).

WhenH' = Hpy, M2(J/kT) is given by equation (16). The denominat@e, M_) in
equation (16) is approximated as
(M M_) o< Y (S7S5) oc x (THKT (25)

i,j
where x(T) is the static uniform susceptibility. Sincg(T) is approximated by the
Bonner—Fisher curve [19], or by the Curie-Weiss curve, it is said $@)kT over
the short-range ordering region changes moderately and thus this factor does not bring
about a drastic decrease nH. Therefore, theT dependence ofAH substantially
arises from that of)_,, (gm(0)g,,(O)f). This factor, i.e., the numerator of equation (16),
involves four-spin correlation functions. On the assumption of the classical spin defined
ass; = S;//S(S+ 1), and isotropic interactions, the four-spin correlation functions are
calculated using Fisher’s classical spin model [20]. Then, one obtains

D (gm@gn(O)F) o Y (855745757, 1) — (577,187 s7,4)) o Ku(K)  (26)
m i,j

where
K =kT/2JS(S+ 1) andu(K) = coth(1/K) — K. (27)

Therefore, the qualitativé dependence oA H is given by Ku(K)/3, which is shown in
figure 5@): AH decreases monotonically with decreasihignd tends to zero.

Although AH(T) for spin-symmetric 1DHAFs is already established, the formula of
AH(T) for such systems is given here, and is compared with equation (26}{§o+ H e,
the calculation similar to the above yields [11]

AH(T) o« MZP(J/kT) + M5E(J/kT) 4+ MS©XJ/kT)

o YN sesl 4 sPseysy sy + P sy

iy ki
1242 v
aﬁa /3 BB o
o ((s'sy sy sy )+ (sf'sysp sf) + -0 0) o +1+— (28)
;; k °l k °l 5(1—1.)) 5

where

v(K) =1-3Ku(K). (29)
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To obtain the final formula in equation (28), only nearest-neighbour spins are counted. The
T dependence oA H given by the final expression in equation (28) is drawn in figut®,5(
which realizes the well known increase o&fH over the short-range ordering region in
spin-symmetric 1DHAFs.

It should be pointed out that equation (28) consists of a plus combination of four-spin
correlation functions, which is in contrast to equation (26). As developed above, it is
gualitatively clarified that the spin-antisymmetric and spin-symmetric perturbations result in
completely different’ dependence oA H from each other over the short-range ordering
region.

Such contrasting” dependence oA H is also elucidated as follows. Converting a spin
to g-space, i.e.S; = N"Y2Y" S, expliq-r:), 3, (gn(0)g,(0)) given by equations (17)
can be expressed as a sum over the single wave vectbhe decoupling scheme of four-
spin correlation functions is also used and correlations are assumed to be isotropic, i.e.,
(Si(r)Sﬂ = 2(S{(1)S5). Then, one obtains

> (gn@gn @) = DAL A, DT+ 28 AIDTUSH(2)SE)(S7,4(1)S5,)

m i,j

—(SF (D8], 2){S5a (D)) = Z{[A@‘”(A;%T +287(A7 )]

AP+ 20 (A l>)T]} (S3(0)87,)? (30)
where
Al = ZAZ") explig-ry) = AU, @) L AU datria (31)
1

because only the nearest-neighbour sites,i + 1, contribute to)_, in equation (31).
Since magnetic ions are located on each straight chain at the same intgrvidden

diir1 = —d;;_1, and therefore\"), = —A"”,. As a result, a relation
A = A @0 — A €7 = 2IA (), sina-q (32)

is obtained. The phase factor sing in equation (32) plays an important role, as will be
explained later. Using equation (32), the expression given by equation (30) is simplified as

Z<gm(r)gm(0) =8[A (A DT + 2451 ( f,j{)T]Z (Si(r)s7,)?sifa-g.  (33)

Using (S; ()S2,) = (S;5%,) exp(—Tyt) in which T’ is a damping factor and replaci@q

9~ —q
by [ dg, one obtains a formula fonH(T) as

7/a §282 )2
AH(T) B/ qd_ldqﬂ sirfa-q
0 Ly
m/a S8 SzS
:B/ qd_ldq<< i55)° LY %) CO§a-q> (34)
0 Iy [y

where B = 8[AL (A )T +2A (AT )T andd = 1.
On the other handi{;, (or H,g) in 1DHAFs yields a formula o\ H which is similar
to equation (34). However, the formula involves a phase factor which is completely different
from that forHp,y,, as is explained below. FGt' = Hpp (or Hpg) =3, > F(’”)S"‘Sﬂ
with m = +£2, £1,0 AH(T) is expressed as
o / st (m)<z;Z>2
(T) Z dg|F\"™ |2 (35)

l]
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Figure 5. The theoretically suggested
r b temperature dependence of the EPR linewidth
0 L normalized at high temperatures for 1DHAFs:
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l +
0 0.5 1.0 (a) for the DM exchange interactionp) for
kT the DD or AE interaction. Herely = 0 K is
2 J] S(S+1) assumed. The abscissa is common &rgnd
(b).

where
Fq(m) _ Z Fi(j’”) explig-ri;)
j

_ pm) da- (m) —ia- (m) Ria- (m) —2ia-
= F €7+ F"e aq"'FiH-zezaq"‘Fii—ze B KRR

Because the coefficients” are symmetric, i.e. " = F{" for r;; = —ry, thenF(™ is
given by

Fq(m) — Z(F:E’") cosa-q + Fz(m) cos 21-q +--) (36)

where F™ = F{") = F\", is the strength ofth-neighbour interactions. Consequently,
the formula of AH for spin-symmetric perturbations, which should be compared with

equation (34), is expressed as

stzq>2

w/a 4
AH(T) x Z Z(Fl(m))Z/ qd—l dquri_
m I 0

q

cosla-q (37)

becausefo”/“ cosla-qcoska-qdg = 0 for I # k.
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Equations (34) and (37) contain the common facjﬁ;lsz_q)z/ I",, which increases over
the short-range ordering region. Whé&nhdecreases towardy, spin fluctuations having
|| = m/a become dominant, and then ées- g ~ 1 and codla-q ~ 1. Although
guantitative estimation of th& dependence of the integrand in equation (34) is difficult,
the two terms in parentheses in the integrand probably cancel each otheF with7y.
This fact leads to the decrease®fi, as is observed in the present compound. In contrast,
the integrand in equation (37) increases according toTtrgependence ofS;Siq)z/ Iy,
and thenA H increases.

3.3. Lineshape

The Lorentzian lineshape observed at hifjlindicates that the effect of the spin-diffusion
process is absent. In fact, it was proven [21] thatghe O fluctuations do not enhance the
secular part ofp,,, as follows. The coef“ficien?t?f3 given by equations (13) is a component

of a vector connecting sitésand j on the chain. Then, a relatidfj].ﬁ = —Af’,f is held as long

as each spin on the chain is located at regular intervals as in the present case, because there
are sitesj and k which satisfyr;; = —r;. From equation (30), the Fourier-transformed
secular part of¥?M(J/kT) is found to be proportional to

(20(0)g0(0)/) = Y [AL (ALY — AD(AO)(sE87,)% (38)
q
Since AY) « sina-q, as given by equation (32), it is clear thaty) — 0 for

q — 0. Thus, the enhancement of tlge = 0 components of the secular part cannot

be expected fo#Hp,,,. This is why the lineshape does not depart from the Lorentzian in the
spin-antisymmetric 1DHAFs. In contrast, the spin-symmetric perturbation terms result in
Fq(’") « cosla-q, as explained before. Then tige~ 0 components of the respective secular
parts which survive in the long-time part @f(z) strongly contribute to the absorption line

at high 7. As a result, the lineshape becomes non-Lorentzian, as intensively discussed
earlier [7].

3.4. The temperature dependence of the resonance field

There are several theoretical treatments [9, 22, 23] forTfthdependence ofes in low-
dimensional Heisenberg magnets. Their results are, of course, identical to each other.
Readers should pay attention to the fact that perturbation terms treated in these theories are
the spin-symmetric ones such as the DD or AE interactions. However, these theories can
also be applied to spin-antisymmetric perturbations. Here, the theory given by Nagata and
Tazuke (NT) [9] is employed. From now on, the coordinatésy, Z] with Z| chain axis

are used. The resonance frequencis given by [9]

ho = ([S-. [S+, H]1)/2(S%) (39)

where S, are the transverse components of the total gpia ), S;, and¢ indicates the
direction ofg-H. WhenH = Hex+ Hz + H' is applied in equation (39), thE-dependent
part arises fromJ,, H'], because ., He = 0 and{[S_, [S,, Hz]]) results inupgg-H.
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The NT result forHpp is briefly reviewed before examining the effect &f = Hp,,
on Hes. The resonance frequencies fBF|| chain axis andd L chain axis are derived as

hoy(T) = gyusH — <C1 Z(S SZq — SXS,H))/(SZ) for H||Z
l‘ (40)
ho (T) = g usgH + (Cz Z(SX X SZS,ZH)>/(SX) for H|| X

whereC; andC, are constant values related to bottand the value of the DD interaction.
The thermal averagels¥ s ;) and (5757 ,) were calculated using Fisher’s classical spin
model. As a resulty; andw; were found to go up and to go down, respectively,7as
decreases towarfh. When Hes is measured at a fixed microwave frequengy,s for H ||
chain axis which is denoted a%Ls decreases, whiléf,es for H L chain axis, denoted as
HZ, increases, and these two fields obey the relatiis(T) - [ H(T)]?}/® =constant.
This prediction well explains the experiments for TMMC [9] and CsMy»ZH,0 [9], both
of which haveHpy as a main perturbation term.

In the same way, the resonance frequencyHor= Hpy, = Y, diit1-(S; x Siy1) IS
derived as

ho(T) = pusg- HjL—Z[d”+1 St S — S7St ) —dit (SPST. — S7SAD] (41)

WherEdtsz-‘rl - dl}l(-‘rl + Idll+l
Smce(SZ 1) and(S; S,Z_H) are zero, the DM interaction witl;; ;1 | Z has no effect
on the resonance frequency. In contrast, the DM interaction ith||Z contributes to
the resonance frequency, becaySgs;, 1= S S;l) does not generally vanish. However,
even this correlation function becomes zero for isotropic spins. Thereffseat a fixed
microwave frequency holds constant abdefor any direction ofH, as long as the DM

interaction is a main perturbation term.

4. Discussion

Parameters of CuGeQvhich are necessary for an analysis of the EPR line are as follows.
The intrachain Cu—Cu distance 2. & is fairly short as compared with the interchain
ones, 4.81A and 4.24A along thea- and b-axis, respectively [14]. The intrachain
antiferromagnetic exchange interactiérdefined by the Hamiltoniah{ = —2J >, S;-S; 41
has been determined by several experimental methods. From neutron scafteringg0 K
was obtained [24], while the experiment on the high-field magnetization process yielded
—915 K [25]. The interchain exchanges along the and b-axes were reported to be
—0.01J and Q1J, respectively [24]. The curve of the susceptibiljgyversusT [1] shows
a broad peak around 50 K, indicating the development of a short-range order over the wide
range ofT aboveTsp, Although x(T') given in [1] can not be fitted by the Bonner—Fisher
curve [19], it is reasonable to treat this compound as a 1DHAF. Since the experimentally
determined value of/ is distributed as introduced above, the mean valuer —76 K,
is used in the calculation presented below, though no contradiction ariges=i~60 or
—915 K is used. Theg-factors which were determined frots at high T for H ||a, b,
andc areg, = 2.15, g, = 2.24, andg. = 2.06, respectively. These values coincide well
with those reported in [6].

Let us first estimateM?™(0), MPP(0), and M5E(0), and clarify the main origin
of line broadening. To evaluate the values &f and |d;;.1|, approximate relations
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|A| ~ (Ag/g)?|J| and|d;;41] =~ (Ag/g)|J| are used, wherdg = g — 2. Using the mean
value ofg,, g,, andg, for g, the respective second moments of the present compound are
approximately calculated as

MEM(0) ~ 5 x 10° O€
M2P(0) ~ 2 x 10° O¢
M5E(0) ~ 10" O€.

The value ofM5™Y0) is found to be comparable ®2°(0).

It is clear from the above tha¥?V(0) is extremely larger than the other two. From
equations (10), (22)—-(24)AH is roughly estimated to be- 10 Oe, as long as only the
perturbation = Hpp + Hag is considered. Therefore, it can be said that the DD
and AE interactions are not the main origin of line broadening in CuGel@ contrast,

H' = Hpy well explains the value ofAH,, and its angular dependence observed at
high T'; from equations (10) and (18) (or (19)AHpp, =~ 1 kOe is estimated, the order

of which approximately agrees with the observation in spite of the rough estimation
of the value of|d;;.1|. Moreover, the experimental result for the angular dependence
of AHp, coincides well with (24 sirf#), as shown in figure 2. That is, the ratio
AHFfp/AH;p ~ AHg,/AHg, ~ 1.5 obtained experimentally agrees with the value 1.5
calculated from equation (19). This agreement indicatesdhat is perpendicular to the
c-axis. As a result, the value of Hy, at high T and its angular dependence are well
explained by the DM interaction with;; .1 1 chain axis.

Furthermore, the lineshape at highis well fitted by the straight line shown in figure 3,
which indicates the Lorentzian of the observed absorption line. If the relaxation of spins
obeyed the diffusion process, the plot should be on or near the dotted line figure 3. The
Lorentzian lineshape thus confirmed also indicates Mg}, is the main perturbation in the
present magnetic system.

Next, A Hpo(T) shown in figure 1 is discussed. In conventional 1DHAFs with spin-
symmetric perturbationg) H (T) increases with decreasirigover the short-range ordering
region. However, such an increase is not seen in the present data. With decfBasing
AHp(T) decreases monotonically for all directions Bf, and reaches the minimum at
T ~ T, The extrapolation of the observexdH,,(T) from the paramagnetic region seems
to tend to zero. The experimental result is rather like the theoretical curvEdgrgiven
in figure 5@). This agreement is another evidence that the EPR line of Cy@&e@ue to
the DM interaction.

Since M2M(0) is very much larger that/PP(0) or M£E(0) in the present compound,
the experimental results are typical of the DM interaction. However, the 1DHAFs which
haveHp,, and satisfy the conditio?m??™ (0) > MPP(0) (or M5E(0)) are rare. Besides the
present compound, only KCygf15] was established to meet this condition. In most of the
1DHAFs with Hp,,, the value ofM2P(0) (or M4E(0)) is comparable to that af/2M(0). In
such a case, the dependenceAdi on T or 6 is not simple. One must therefore remember
that the magnetic dimensionality is not a unique factor to determifgT) or AH (0)7.

Finally, the T dependence offs is discussed. The experimental result that shows no
change off;eswith T for T > Tspis consistent with the theory given in subsection 3.4. Thus,

T A typical example is seen iMH(T) reported in the organic spin—Peierls compounds TNIB4C4(CF3)4

(M = Au, Cu) [26]. ForT > Tgp, AH(T) in the Au compound rather resembles that of Cuge@ H(T)
decreases monotonically with decreasifigoward 7sp. On the other handA H(T) in the Cu compound seems

to be almost independent @f. To understand this difference, the perturbation terms which contribute to the line
broadening in the respective compounds must be clarified.



Antisymmetric exchange interaction in CuGeO 2639

the T independence off.s also proves that the DM interaction is a leading perturbation in
CuGeQ.

As a whole, all factors of the EPR line of CuGgQe., the value oAH andAH (9) as
well as the lineshape at high, AH(T), and H,.(T) are found to be completely explained
by the DM interaction withd;;+1 L chain axis, which is the conclusion of the present
experiments and analysis.

5. The present result and crystal symmetry

Concerning the crystal structure of this compoundZfos Tsp, the space groupbmm given

by Vollenkle et al [14] has been accepted so far. However, the present EPR experiments
and analysis strongly suggest the impropriety of this symmetry, because the crystal structure
represented by bmm does not allow the presence of the DM interaction. That is, the Moriya
rule [27] which gives relations between crystal symmetry and the DM interaction indicates
the absence of the DM interaction in this compound. More precisely, a crystal symmetry
should have no inversion centre halfway between nearest-neighbour magnetic ion sites if
the DM interaction exists. As long as the crystal symmetry given Bjlevikle et al is
employed, the midpoint between nearest-neighbour Cu sites or+dliés is an inversion
centre, which means thak;,; = 0.

However, there are reasons to doubt the crystal symmetry given in [14], which was
reported about three decades ago. At that time, the power of x-ray sources was not so strong
as it is these days. Consequently, the results, of x-ray investigations on various compounds
reported at that time have been corrected subsequently, which is due to improvements in
x-ray sources as well as quality of the respective compounds achieved during the last two or
three decades. For instance, concerning the crystal structure of;KeFspace group 13
was accepted for a long time. Several years ago, the EPR investigations [15, 16] suggested
the existence of the DM interaction in this compound, but the crystal symmetry mentioned
above did not allow this interaction. However, recent x-ray diffraction experiments revealed
that the crystal structure of KCyFhas a symmetry lower than that of§) and the newly
found structure accounts for the DM interaction [28]. The present compound is probably
not an exception.

According to the Moriya rule [27], the conditiad}; ;1 L ¢ restricts the crystal symmetry
allowed for CuGe@. The crystal symmetry should satisfy at least one of the following rules
for the nearest-neighbour Cu pairs on thaxis.

(i) There should be a mirror plane which is perpendicular to the Cu—Cu bonding line
and which bisects this bonding line.

(ii) There should be a mirror plane including the Cu—Cu bonding line.

(iif) There should be a twofold rotation axis which is perpendicular to the Cu—Cu bonding
line and which passes through the midpoint of the bonding line.

6. Conclusion

From the present EPR experiments and analysis)the,;.1-(S; x S;+1) interaction with
d;i11 L c-axis between nearest-neighbour Cu spins orcthgis is clarified to be the main
perturbation term that characterizes the EPR line in CuGelis fact suggests that the
crystal symmetry should be lower than that given by the space graupm which has
been accepted so far.
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The crystal symmetry [29, 30] fol' < Tsp derived from the dimerization of Cu—Cu
pairs should also be reexamined. If the DM interaction between the dimerized spins exists,
how does it affect the singlet ground state, as well as the triplet excited state? In response
to the present study, critical reexaminations of the crystal structure of this compound using
high-quality single crystals are now proceeding
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