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Abstract. Several reports of electron paramagnetic resonance experiments performed on the
spin–Peierls compound CuGeO3 have appeared so far, but none of them have precisely explained
the origin of the line broadening and the temperature dependence of both the linewidth and the
resonance field, all of which differ from those of conventional one-dimensional Heisenberg
antiferromagnets in which the dipolar or anisotropic exchange interaction brings about line
broadening. In the present report, it is clarified that the antisymmetric exchange interaction,∑

i dii+1 · (Si × Si+1) with dii+1 ⊥ c-axis (magnetic chain), between nearest-neighbour Cu
spins on thec-axis governs all factors which characterize the EPR line of CuGeO3, i.e., the
value and the angular dependence of the linewidth at high temperatures where the short-range
order is completely absent, the temperature dependence of the linewidth, and the resonance
field, as well as the high-temperature lineshape. The present conclusion indicates that the
crystal symmetry of this compound is lower than that given by the space groupPbmm which
was reported by V̈ollenkle et al in 1967, because the symmetryPbmm does not allow the
antisymmetric exchange interaction mentioned above.

1. Introduction

The spin–Peierls compound CuGeO3 has recently attracted much attention. This compound
was found to form linear Heisenberg antiferromagnetic chains along thec-axis, and to turn
into the spin–Peierls state belowTsp = 14 K [1]. Many studies on this compound have been
reported so far. Among them, several electron paramagnetic resonance (EPR) investigations
are included [2–6]. The experimental results given in them are summarized as follows. The
linewidth 1H which reaches approximately 1–2 kOe at room temperature decreases very
rapidly with decreasing temperature, but it does not increase over the short-range ordering
region. In contrast to1H versus temperatureT , the resonance fieldHres does not change
with T aboveTsp. Although these results are common to all reports except one [3], precise
explanations for the respective results were not given.

The EPR experimental results summarized above are not similar to those of conventional
one-dimensional Heisenberg antiferromagnets (1DHAF) such as TMMC [7–9] and CsMnCl3·
2H2O [9–11]; the characteristics of the EPR line of these well investigated 1DHAFs are
summarized as follows.
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(i) The lineshape at highT departs from the Lorentzian shape; highT means the
temperature region where the short-range order is completely absent.

(ii) The angular dependence of1H at highT obeys a relation such as(3 cos2 θ −1)4/3,
whereθ is an angle between the chain axis and an external field.

(iii) Over the short-range ordering region,1H increases with decreasingT .
(iv) Over the short-range ordering region,Hres for external fields parallel and

perpendicular to the chain axis shift from those observed at highT to directions opposite
to each other.

Phenomena (i) and (ii) are due to the long-time diffusive relaxation process [7]. That
is, only long-wavelength (q ∼ 0) spin fluctuations survive over theτ−1/2 part of the
relaxation process. As a result, contribution from theq ∼ 0 components of the secular
parts of the perturbation terms to line broadening is enhanced, which brings about the
(3 cos2 θ −1)4/3-like angular change in the linewidth, as well as a non-Lorentzian lineshape.
When T is decreased, the|q| ∼ π/a spin fluctuations take the place ofq ∼ 0 over
the short-range ordering region (where|a| is the spin–spin distance in the chain), which
then causes the phenomenon (iii). The crossover fromq ∼ 0 to |q| ∼ π/a appears
in 1H(T ) more clearly in 1DHAFs with Cu2+ compounds such as CuCl2 ·2NC5H5 [12]
and Cu(C6H5COO)2 · 3H2O [13] than in the Mn2+ compounds introduced above. That
is, 1H(T ) in the Cu2+ compounds first decreases gradually with decreasingT and then
begins to increase rapidly over the short-range ordering region, while1H(T ) in the Mn2+

compounds is first almost constant and begins to increase with decreasingT . Furthermore,
the increase of the two-spin correlations over the short-range ordering region affectsHres,
which results in (iv), as was proven in [9].

Considering that1H andHres of the EPR line depend on the perturbation terms, one
must remember that the phenomena given by (i)–(iv) are due to spin-symmetric perturbation
terms such as the dipole–dipole (DD) and the anisotropic exchange (AE) interactions, i.e.,
the perturbation terms in which the coefficients of two-spin interactions are not related to
exchanging relevant spins with each other.

When the perturbation consists of a spin-antisymmetric interaction such as the
Dzyaloshinsky–Moriya (DM) exchange interaction, the dependence of1H and Hres on
T is quite different from that of spin-symmetric ones, as will be explained later. Therefore,
one must first clarify what kinds of perturbation are the leading term for the line broadening
in an analysis of EPR data. The EPR studies [2–6] on CuGeO3 mentioned above did not
address this indispensable process.

In the present study, attention is solely given to the paramagnetic region, and it is
made clear from our EPR data that the DM interaction

∑
i dii+1 · (Si × Si+1) between

nearest-neighbour Cu spins on thec-axis governs the EPR absorption line of CuGeO3.
That is, 1H(T ) and Hres(T ), as well as the value of1H and the lineshape at highT ,
are well explained when the DM interaction is considered as a main perturbation term.
From the analysis of the angular dependence of1H at high T , the direction ofdii+1

is determined to be perpendicular to thec-axis. Based on the fact that CuGeO3 should
have DM interaction between the spins along thec-axis, it is concluded that the crystal
symmetry of this compound proposed by Völlenkle et al [14] about three decades ago that
has been accepted so far is not correct, because this symmetry has an inversion centre at
the midpoint between nearest-neighbour Cu2+ sites on thec-axis, which does not allow the
DM interaction.

The outline of this paper is as follows. The experimental results and theoretical
background which is necessary to analyse them are given in sections 2 and 3, successively.
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Analysis and discussion are developed in section 4. In section 5, it is pointed out that the
crystal symmetry of this compound must be lower than that given in [14].

2. Experimental results

EPR measurements for single crystals of CuGeO3 were made using a 100 kHz field-
modulated K-band spectrometer operated at 24.48 GHz. For the measurements below
room temperature, a resonance cavity was inserted in a liquid-He cryostat. Above room
temperature, a water-cooled cavity was employed, using a platinum-strip-coated quartz tube
inserted in the cavity as a resistive heater. Each cavity had a sample rotation mechanism
around a vertical axis, andT was electronically controlled. Resonance absorption was
recorded as a derivative line.

Figure 1. The dependence of derivative peak-to-peak linewidth on temperature observed at
24.48 GHz forH‖a-, b-, and c-axes. The lower-temperature part is enlarged in the inset,
where the extrapolation of1H(T ) from the paramagnetic region seems to go down to zero with
T → 0.

Figure 1 shows theT dependence of the derivative peak-to-peak linewidth1Ha
pp,

1Hb
pp, and 1Hc

pp obtained for an external fieldH applied along thea-, b-, and c-axis,
respectively. As can be seen in this figure, they nearly saturate above approximately
600 K, which indicate that the theory for highT developed in subsection 3.1 below can
be applied to the data obtained above this temperature. Furthermore, one finds the relation
1Hc

pp < 1Ha
pp ' 1Hb

pp. The angular dependence of1Hpp observed on rotating the
direction ofH in the bc- andac-planes is shown in figure 2.

From the results shown in figures 1 and 2, several striking features can be pointed out.
First, the values of1Hpp at highT for all directions ofH are extremely large, in spite of
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Figure 2. The angular dependence of linewidth at 800 K where the theory for highT developed
in subsection 3.1 can be applied, as well as that observed at 290 K. For both temperatures, the
ratio 1Hb

pp/1Hc
pp ' 1Ha

pp/1Hc
pp ' 1.5 is found.

the fact that the absorption line is strongly exchange narrowed. Second,1Hc
pp < 1Ha

pp or
(1Hb

pp), i.e., 1Hpp for H applied along the chain axis is narrower than that forH applied

perpendicular to the chain axis, and it seems as if1Hpp(θ) ∝ (2 + sin2 θ) for the direction
of H rotated in both theac- and bc-planes. This angular dependence is in contrast to
that of conventional 1DHAFs in which the DD and AE interactions are the main origin
of line broadening. Third,1Hpp(T ) for all directions ofH decreases monotonically with
decreasingT , and does not show any increase over the short-range ordering region.

To examine the lineshape at highT , the derivative absorption line forH‖c-axis is
analysed. The result for the line observed at 495 K which is high enough for the analysis is
shown in figure 3. The figure with an ordinate and an abscissa given as figure 3 is convenient,
because a Lorentzian lineshape is reproduced as a straight line, as first introduced in [7]. The
experimental data plotted in figure 3 coincide well with the straight line that is derived from
the Lorentzian. Thus, the observed lineshape is defined to be a Lorentzian. For reference,
the lineshape which arises from the spin-diffusion process is also given in figure 3.

Finally, the T dependence of the resonance field,Hres, is shown in figure 4. In the
figure, the values ofHres− HDPPH are plotted as a function ofT , whereHDPPH is the field
that corresponds tog = 2.00. One finds that the distribution ofHres − HDPPH is within
±10 Oe forT > Tsp, which indicates thatHres is not related to the change ofT . This result
is also different from that of conventional 1DHAFs with spin-symmetric perturbations, as
will be clarified in subsection 3.4.

3. Theoretical background

Several years ago, one of the present authors (IY) and coworkers [15, 16] clarified that all
factors of the EPR line observed in KCuF3, which is known as one of the representative
1DHAFs, are wholly due to the DM interaction. However, the analysis given in [15]
is insufficient. Therefore, a theory for the EPR line governed by the DM interaction is
developed here.
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Figure 3. The lineshape observed at 495 K. The solid straight line corresponds to a Lorentzian,
while the dotted line is derived from the Fourier transform of exp(−t3/2), which indicates a
lineshape due to the spin-diffusion process. The factorI ′(H) is the height of the derivative line.

3.1. The linewidth at the high-temperature limit (T → ∞)

In this subsection, formulae which are necessary to analyse the linewidth as well as
its angular dependence at highT are derived. An EPR line of an exchange-coupled
magnetic system can be analysed using the Kubo–Tomita theory [17]. In the following,
the Hamiltonian defined as

H = H0 + H′ (1)

is used, where the main termH0 consists of the isotropic exchange between spins on the
chain along thec-axis and Zeeman interactions, which is expressed as

H0 = Hex + HZ = −2J
∑

i

Si ·Si+1 − µB

∑
i

Si ·g·H (2)

where g is a g-tensor. The perturbationH′ contains all other terms that cause the line
broadening such as the DD, AE, and DM interactions.

At the beginning of the analysis, the DM interaction will be clarified as being a leading
perturbation in CuGeO3. Since S = 1/2 in this compound, a single-ion anisotropy is
completely absent. The hyperfine interaction also contributes to the line broadening, but its
effect is negligible. Thus, the DD and AE interactions, as well as the DM interaction, are
candidates for line broadening, i.e.,

H′ = H′
DD + H′

AE + H′
DM . (3)

In the present compound, the intrachain Cu–Cu distance is fairly short as compared with
those of the interchain ones. Thus, it is enough to count only the spins on thec-axis for
H′

DD. Furthermore, bothH′
AE and H′

DM arise from the intrachain exchange interaction,
because interchain exchange interactions are extremely weak. Explicit values of the lattice
parameters, as well as the intrachain and interchain exchange interactions, will be given in
section 4.
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Figure 4. The dependence of resonance field on temperature observed at 24.48 GHz. The
values ofHres− HDPPH are plotted, whereHDPPH is the resonance field that corresponds to the
g = 2 line. The abscissa is common forH‖a-, b-, andc-axes. From these data,ga = 2.15,
gb = 2.24, andgc = 2.06 are calculated.

The EPR absorption lineI (ω − ω0) at a frequencyω is given by the Fourier transform
of ϕ(t) as

I (ω − ω0) =
∫ ∞

−∞
ϕ(t) exp[i(ω − ω0)t ] dt (4)

whereω0 is the angular resonance frequency, andϕ(t) is a relaxation function expressed as

ϕ(t) = 〈M̃+(t)M−(0)〉
〈M+M−〉 . (5)

In the above,M̃+(t) is an interaction representation andM± = gµB
∑

i S
±
i . The relaxation

function ϕ(t) is expressed by the correlation function

ψ(τ ) = 〈[H̃′(τ ), M+(0)][M−(0), H′(0)]〉
h̄2〈M+M−〉 (6)

as

ϕ(t) = exp

[
−

∫ t

0
(t − τ)ψ(τ ) dτ

]
(7)
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where

H̃′(τ ) = exp

(−iH0τ

h̄

)
H′(0) exp

(
iH0τ

h̄

)
. (8)

When spin-diffusional relaxation is not effective,ϕ(t) is approximated as

ϕ(t) = exp

(
− t

∫ ∞

0
ψ(τ ) dτ

)
= exp[−tψ(0)τc] (9)

with a characteristic timeτc ' h̄/|J |. The functionψ(0) corresponds to the second moment
M2(J/kT ). The absorption line observed by fixing a microwave frequency and sweeping
an external field has1H which is approximated as

1H ' h̄2

gµB|J |M2(J/kT ) Oe. (10)

When the spin-diffusion process is effective, the approximate evaluation of1H given
by equation (10) collapses, as intensively developed earlier [7, 18]. As will be clarified later
in subsection 3.3, the spin-diffusion process has no effect on the EPR line governed by the
DM interaction. Therefore, there is no problem with using equations (9) and (10) as long
as H′

DM is a leading term inH′. Since the treatment of symmetric terms in 1DHAFs is
established [7, 17, 18], only that ofH′

DM is presented here.
To see the value and angular dependence of1H at high T , M2(J/kT → 0) is

calculated. The process to deriveM2(J/kT ) is as follows. Two coordinate systems are
employed. One is [X Y Z] which are fixed to the crystal axes [a b c] with Z‖c, while the
other one is [x y z] defined withH‖z. The polar and azimuthal angles ofH with respect
to thec-axis areθ andφ, respectively.

The termH′
DM is decomposed into the secular and non-secular parts as

H′
DM(τ = 0) =

∑
i

dii+1·(Si × Si+1)

=
∑

i

∑
αβ

λ
αβ

ii+1(S
α
i S

β

i+1 − S
β

i Sα
i+1) ≡ GDM

0 (0) + GDM
1 (0) + GDM

−1 (0) (11)

where dii+1 = (dX
ii+1, d

Y
ii+1, d

Z
ii+1), and α, β = +, −, z. Expressions of the secular part

GDM
0 (0) and the non-secular partsGDM

±1 (0) are

GDM
0 (0) = 1

2
i
∑

i

λ
xy

ii+1(S
+
i S−

i+1 − S−
i S+

i+1)

GDM
1 (0) = 1

2

∑
i

(λxz
ii+1 − iλyz

ii+1)(S
+
i Sz

i+1 − Sz
i S

+
i+1)

GDM
−1 (0) = 1

2

∑
i

(λxz
ii+1 + iλyz

ii+1)(S
−
i Sz

i+1 − Sz
i S

−
i+1)

(12)

in which

λ
xy

ii+1 = dX
ii+1 sinθ cosφ − dY

ii+1 sinθ + dZ
ii+1 cosθ

λxz
ii+1 = dX

ii+1 sinφ − dY
ii+1 cosφ

λ
yz

ii+1 = dX
ii+1 cosθ cosφ + dY

ii+1 cosθ sinφ − dZ
ii+1 sinθ.

(13)
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From equations (12),gm(0) ≡ [GDM
m (0), M+(0)] for m = 0, 1, and−1 are calculated as

g0(0) =
∑

i

3
(0)

ii+1(S
+
i Sz

i+1 − Sz
i S

+
i+1)

g1(0) = 0

g−1(0) =
∑

i

3
(−1)

ii+1(S
−
i S+

i+1 − S+
i S−

i+1)

(14)

where

3
(0)

ii+1 ≡ igµBλ
xy

ii+1 3
(−1)

ii+1 ≡ 1
2gµB(λxz

ii+1 + iλyz

ii+1) (15)

and 3
(m)

ii+1 does not depend oni. From equation (6), the second momentMDM
2 (J/kT ) is

given by

MDM
2 (J/kT ) =

( ∑
m

〈gm(0)gm(0)†〉
)

/h̄2〈M+M−〉. (16)

Applying equation (14) to〈gm(0)gm(0)†〉, one finds that

〈g0(0)g0(0)†〉 =
∑
i,j

3
(0)

ii+1(3
(0)

jj+1)
†〈(S+

i Sz
i+1 − Sz

i S
+
i+1)(S

−
j Sz

j+1 − Sz
j S−

j+1)〉

〈g−1(0)g−1(0)†〉 =
∑
i,j

3
(−1)

ii+1(3
(−1)

jj+1)
†〈(S−

i S+
i+1 − S+

i S−
i+1)(S

+
j S−

j+1 − S−
j S+

j+1)〉.
(17)

Counting only i = j terms in equations (17), and using a decoupling scheme for four-
spin correlation functions, one can calculateMDM

2 (0). In the calculation, the isotropy of
correlations is assumed, and then relations ¯h2〈M+M−〉 = 2Nh̄2g2µ2

BS(S + 1)/3 which is
satisfied at highT and〈S+

i S−
i 〉 = 2〈(Sz

i )
2〉 = 2S(S + 1)/3 are used. The result is

MDM
2 (0) = (1/3h̄2)|dii+1|2S(S + 1)(1 + cos2 θ) whendii+1‖ chain axis (18)

or

MDM
2 (0) = (1/6h̄2)|dii+1|2S(S + 1)(2 + sin2 θ) whendii+1 ⊥ chain axis. (19)

The other two perturbations

H′
DD = g2µ2

B

∑
i>j

1

r3
ij

[
Si ·Sj − 3(Si ·rij )(Sj ·rij )

r2
ij

]
(20)

and

H′
AE =

∑
i

Si ·Aii+1·Si+1 (21)

with diagonal components of the tensorAii+1 as (AX
ii+1, A

Y
ii+1, A

Z
ii+1) ≡ (A, A,−2A), are

familiar and have been intensively treated. Their respective second moments are

MDD
2 (0) = 3g4µ4

B

2h̄2

( ∑
i>j

1

r3
ij

)2

S(S + 1)(1 + cos2 θ) (22)

MAE
2 (0) = 3

2h̄2 A2S(S + 1)(1 + cos2 θ). (23)

Strictly speaking, the angular part in equation (23) is not exact for CuGeO3, because the
principal axes of the CuO6 octahedron do not coincide with the [abc]-axes. However,
estimation of the value ofMAE

2 (0) is possible without knowing the precise angular
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dependence ofMAE
2 (0). In MDD

2 (0) and MAE
2 (0) given above, both the secular and non-

secular parts are included. It can exactly be shown that a cross term betweenH′
DM andH′

DD
(or H′

AE) is absent, but the cross term betweenH′
DD andH′

AE yields an additional second
moment

Mcross
2 (0) = 1

4h̄2 Ag2µ2
B

( ∑
i>j

1

r3
ij

)
S(S + 1) Ang(θ) (24)

where Ang(θ) indicates an angular-dependent part. Using the formulae forMDM
2 (0),

MDD
2 (0), andMAE

2 (0) given above, one can estimate the contribution of respective second
moments to the EPR linewidth observed at highT .

3.2. The temperature dependence of the linewidth

Based on equation (6), a theory which qualitatively explains theT dependence of1H

observed in the present compound is developed. For convenience,TN is used instead of
Tsp in subsections 3.2 and 3.4. TheT dependence of1H arises from that ofM2(J/kT ).
When H′ = H′

DM, M2(J/kT ) is given by equation (16). The denominator〈M+M−〉 in
equation (16) is approximated as

〈M+M−〉 ∝
∑
i,j

〈Sz
i S

z
j 〉 ∝ χ(T )kT (25)

where χ(T ) is the static uniform susceptibility. Sinceχ(T ) is approximated by the
Bonner–Fisher curve [19], or by the Curie–Weiss curve, it is said thatχ(T )kT over
the short-range ordering region changes moderately and thus this factor does not bring
about a drastic decrease in1H . Therefore, theT dependence of1H substantially
arises from that of

∑
m〈gm(0)gm(0)†〉. This factor, i.e., the numerator of equation (16),

involves four-spin correlation functions. On the assumption of the classical spin defined
as si ≡ Si/

√
S(S + 1), and isotropic interactions, the four-spin correlation functions are

calculated using Fisher’s classical spin model [20]. Then, one obtains∑
m

〈gm(0)gm(0)†〉 ∝
∑
i,j

(〈sx
i s

y

i+1s
x
j s

y

j+1〉 − 〈sx
i s

y

i+1s
y

j sx
j+1〉) ∝ 1

3Ku(K) (26)

where

K ≡ kT /2JS(S + 1) andu(K) ≡ coth(1/K) − K. (27)

Therefore, the qualitativeT dependence of1H is given byKu(K)/3, which is shown in
figure 5(a): 1H decreases monotonically with decreasingT and tends to zero.

Although 1H(T ) for spin-symmetric 1DHAFs is already established, the formula of
1H(T ) for such systems is given here, and is compared with equation (26). ForH′

DD+H′
AE,

the calculation similar to the above yields [11]

1H(T ) ∝ MDD
2 (J/kT ) + MAE

2 (J/kT ) + Mcross
2 (J/kT )

∝
∑
i,j

∑
k,l

〈Sα
i S

β

j + S
β

i Sα
j 〉〈Sα′

k S
β ′
l + S

β ′
k Sα′

l 〉

∝
∑
i,j

∑
k,l

(〈sα
i s

β

j sα′
k s

β ′
l 〉 + 〈sα

i s
β

j s
β ′
k sα′

l 〉 + · · ·) ∝ 12u2

5(1 − v)
+ 1 + v

5
(28)

where

v(K) = 1 − 3Ku(K). (29)
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To obtain the final formula in equation (28), only nearest-neighbour spins are counted. The
T dependence of1H given by the final expression in equation (28) is drawn in figure 5(b),
which realizes the well known increase of1H over the short-range ordering region in
spin-symmetric 1DHAFs.

It should be pointed out that equation (28) consists of a plus combination of four-spin
correlation functions, which is in contrast to equation (26). As developed above, it is
qualitatively clarified that the spin-antisymmetric and spin-symmetric perturbations result in
completely differentT dependence of1H from each other over the short-range ordering
region.

Such contrastingT dependence of1H is also elucidated as follows. Converting a spin
to q-space, i.e.,Si = N−1/2 ∑

q Sq exp(iq ·ri ),
∑

m〈gm(0)gm(0)†〉 given by equations (17)
can be expressed as a sum over the single wave vectorq. The decoupling scheme of four-
spin correlation functions is also used and correlations are assumed to be isotropic, i.e.,
〈S±

i (τ )S∓
j 〉 = 2〈Sz

i (τ )Sz
j 〉. Then, one obtains∑

m

〈gm(τ)gm(0)†〉 =
∑
i,j

[3(0)

ii+1(3
(0)

jj+1)
† + 23

(−1)

ii+1(3
(−1)

jj+1)
†](〈Sz

i (τ )Sz
j 〉〈Sz

i+1(τ )Sz
j+1〉

−〈Sz
i (τ )Sz

j+1〉〈Sz
i+1(τ )Sz

j 〉) =
∑

q

{[3(0)
q (3(0)

q )† + 23(1)
q (3(−1)

q )†]

−[3(0)
q (3

(0)
−q)

† + 23(−1)
q (3

(−1)
−q )†]}〈Sz

q(τ )Sz
−q〉2 (30)

where

3(m)
q =

∑
l

3
(m)
il exp(iq·ril) = 3

(m)

ii+1eiq·(ri+1−ri ) + 3
(m)

ii−1eiq·(ri−1−ri ) (31)

because only the nearest-neighbour sites,l = i ± 1, contribute to
∑

l in equation (31).
Since magnetic ions are located on each straight chain at the same interval|a|, then

dii+1 = −dii−1, and therefore3(m)

ii+1 = −3
(m)

ii−1. As a result, a relation

3(m)
q = 3

(m)

ii+1eia·q − 3
(m)

ii+1e−ia·q = 2i3(m)

ii+1 sina·q (32)

is obtained. The phase factor sina·q in equation (32) plays an important role, as will be
explained later. Using equation (32), the expression given by equation (30) is simplified as∑
m

〈gm(τ)gm(0)†〉 = 8[3(0)

ii+1(3
(0)

ii+1)
† + 23

(−1)

ii+1(3
(−1)

ii+1)
†]

∑
q

〈Sz
q(τ )Sz

−q〉2 sin2 a·q. (33)

Using 〈Sz
q(τ )Sz

−q〉 = 〈Sz
qS

z
−q〉 exp(−0qt) in which 0q is a damping factor and replacing

∑
q

by
∫

dq, one obtains a formula for1H(T ) as

1H(T ) ∝ B

∫ π/a

0
qd−1 dq

〈Sz
qS

z
−q〉2

0q

sin2 a·q

= B

∫ π/a

0
qd−1 dq

( 〈Sz
qS

z
−q〉2

0q

− 〈Sz
qS

z
−q〉2

0q

cos2 a·q
)

(34)

whereB ≡ 8[3(0)

ii+1(3
(0)

ii+1)
† + 23

(−1)

ii+1(3
(−1)

ii+1)
†] and d = 1.

On the other hand,H′
DD (or H′

AE) in 1DHAFs yields a formula of1H which is similar
to equation (34). However, the formula involves a phase factor which is completely different
from that forH′

DM, as is explained below. ForH′ = H′
DD ( or H′

AE) = ∑
m

∑
i>j F

(m)
ij Sα

i S
β

j

with m = ±2, ±1, 0 1H(T ) is expressed as

1H(T ) ∝
2∑

m=−2

∫ π/a

0
qd−1 dq|F (m)

q |2 〈Sz
qS

z
−q〉2

0q

(35)
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Figure 5. The theoretically suggested
temperature dependence of the EPR linewidth
normalized at high temperatures for 1DHAFs:
(a) for the DM exchange interaction; (b) for
the DD or AE interaction. Here,TN = 0 K is
assumed. The abscissa is common for (a) and
(b).

where

F (m)
q =

∑
j

F
(m)
ij exp(iq·rij )

= F
(m)

ii+1eia·q + F
(m)

ii−1e−ia·q + F
(m)

ii+2e2ia·q + F
(m)

ii−2e−2ia·q + · · · .
Because the coefficientsF (m)

ij are symmetric, i.e.,F (m)
ij = F

(m)
ik for rij = −rik, thenF (m)

q is
given by

F (m)
q = 2(F

(m)

1 cosa·q + F
(m)

2 cos 2a·q + · · ·) (36)

whereF
(m)
l ≡ F

(m)
ii+l = F

(m)
ii−l is the strength oflth-neighbour interactions. Consequently,

the formula of 1H for spin-symmetric perturbations, which should be compared with
equation (34), is expressed as

1H(T ) ∝
∑
m

∑
l

(F
(m)
l )2

∫ π/a

0
qd−1 dq

〈Sz
qS

z
−q〉2

0q

cos2 la·q (37)

because
∫ π/a

0 cosla·q coska·q dq = 0 for l 6= k.
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Equations (34) and (37) contain the common factor〈Sz
qS

z
−q〉2/0q , which increases over

the short-range ordering region. WhenT decreases towardTN, spin fluctuations having
|q| = π/a become dominant, and then cos2 a ·q ' 1 and cos2 la ·q ' 1. Although
quantitative estimation of theT dependence of the integrand in equation (34) is difficult,
the two terms in parentheses in the integrand probably cancel each other withT → TN.
This fact leads to the decrease of1H , as is observed in the present compound. In contrast,
the integrand in equation (37) increases according to theT dependence of〈Sz

qS
z
−q〉2/0q ,

and then1H increases.

3.3. Lineshape

The Lorentzian lineshape observed at highT indicates that the effect of the spin-diffusion
process is absent. In fact, it was proven [21] that theq ∼ 0 fluctuations do not enhance the
secular part ofH′

DM as follows. The coefficientλαβ

ij given by equations (13) is a component

of a vector connecting sitesi andj on the chain. Then, a relationλαβ

ij = −λ
αβ

ik is held as long
as each spin on the chain is located at regular intervals as in the present case, because there
are sitesj and k which satisfyrij = −rik. From equation (30), the Fourier-transformed
secular part ofMDM

2 (J/kT ) is found to be proportional to

〈g0(0)g0(0)†〉 =
∑

q

[3(0)
q (3(0)

q )† − 3(0)
q (3

(0)
−q)

†]〈Sz
qS

z
−q〉2. (38)

Since 3
(0)
±q ∝ sina · q, as given by equation (32), it is clear that3

(0)
±q → 0 for

q → 0. Thus, the enhancement of theq = 0 components of the secular part cannot
be expected forH′

DM. This is why the lineshape does not depart from the Lorentzian in the
spin-antisymmetric 1DHAFs. In contrast, the spin-symmetric perturbation terms result in
F (m)

q ∝ cosla·q, as explained before. Then theq ∼ 0 components of the respective secular
parts which survive in the long-time part ofψ(τ ) strongly contribute to the absorption line
at high T . As a result, the lineshape becomes non-Lorentzian, as intensively discussed
earlier [7].

3.4. The temperature dependence of the resonance field

There are several theoretical treatments [9, 22, 23] for theT dependence ofHres in low-
dimensional Heisenberg magnets. Their results are, of course, identical to each other.
Readers should pay attention to the fact that perturbation terms treated in these theories are
the spin-symmetric ones such as the DD or AE interactions. However, these theories can
also be applied to spin-antisymmetric perturbations. Here, the theory given by Nagata and
Tazuke (NT) [9] is employed. From now on, the coordinates [X, Y, Z] with Z‖ chain axis
are used. The resonance frequencyω is given by [9]

h̄ω = 〈[S−, [S+, H]] 〉/2〈Sζ 〉 (39)

whereS± are the transverse components of the total spinS = ∑
i Si , andζ indicates the

direction ofg·H. WhenH = Hex + HZ + H′ is applied in equation (39), theT -dependent
part arises from [S+, H′], because [S+, Hex] = 0 and〈[S−, [S+, HZ]] 〉 results inµBg·H.
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The NT result forH′
DD is briefly reviewed before examining the effect ofH′ = H′

DM
on Hres. The resonance frequencies forH‖ chain axis andH ⊥ chain axis are derived as

h̄ω‖(T ) = g‖µBH −
(

C1

∑
i

〈SZ
i SZ

i+1 − SX
i SX

i+1〉
)/

〈SZ〉 for H‖Z

h̄ω⊥(T ) = g⊥µBH +
(

C2

∑
i

〈SX
i SX

i+1 − SZ
i SZ

i+1〉
)/

〈SX〉 for H‖X
(40)

whereC1 andC2 are constant values related to bothJ and the value of the DD interaction.
The thermal averages〈SX

i SX
i+1〉 and 〈SZ

i SZ
i+1〉 were calculated using Fisher’s classical spin

model. As a result,ω‖ and ω⊥ were found to go up and to go down, respectively, asT

decreases towardTN. WhenHres is measured at a fixed microwave frequency,Hres for H‖
chain axis which is denoted asH ‖

res decreases, whileHres for H ⊥ chain axis, denoted as
H±

res, increases, and these two fields obey the relation{H ‖
res(T ) · [H⊥

res(T )]2}1/3 =constant.
This prediction well explains the experiments for TMMC [9] and CsMnCl3·2H2O [9], both
of which haveH′

DD as a main perturbation term.
In the same way, the resonance frequency forH′ = H′

DM = ∑
i dii+1 ·(Si × Si+1) is

derived as

h̄ω(T ) = µBg·H + i

2〈Sζ 〉
∑

i

[dZ
ii+1〈S+

i S−
i+1 − S−

i S+
i+1〉 − d+

ii+1〈SZ
i S−

i+1 − S−
i SZ

i+1〉] (41)

whered+
ii+1 ≡ dX

ii+1 + idY
ii+1.

Since〈SZ
i S−

i+1〉 and〈S−
i SZ

i+1〉 are zero, the DM interaction withdii+1 ⊥ Z has no effect
on the resonance frequency. In contrast, the DM interaction withdii+1‖Z contributes to
the resonance frequency, because〈S+

i S−
i+1 − S−

i S+
i+1〉 does not generally vanish. However,

even this correlation function becomes zero for isotropic spins. Therefore,Hres at a fixed
microwave frequency holds constant aboveTN for any direction ofH, as long as the DM
interaction is a main perturbation term.

4. Discussion

Parameters of CuGeO3 which are necessary for an analysis of the EPR line are as follows.
The intrachain Cu–Cu distance 2.94̊A, is fairly short as compared with the interchain
ones, 4.81Å and 4.24 Å along the a- and b-axis, respectively [14]. The intrachain
antiferromagnetic exchange interactionJ defined by the HamiltonianH = −2J

∑
i Si·Si+1

has been determined by several experimental methods. From neutron scattering,J ' −60 K
was obtained [24], while the experiment on the high-field magnetization process yielded
−91.5 K [25]. The interchain exchanges along thea- and b-axes were reported to be
−0.01J and 0.1J , respectively [24]. The curve of the susceptibilityχ versusT [1] shows
a broad peak around 50 K, indicating the development of a short-range order over the wide
range ofT aboveTsp. Althoughχ(T ) given in [1] can not be fitted by the Bonner–Fisher
curve [19], it is reasonable to treat this compound as a 1DHAF. Since the experimentally
determined value ofJ is distributed as introduced above, the mean value,J = −76 K,
is used in the calculation presented below, though no contradiction arises ifJ = −60 or
−91.5 K is used. Theg-factors which were determined fromHres at highT for H‖a, b,
and c arega = 2.15, gb = 2.24, andgc = 2.06, respectively. These values coincide well
with those reported in [6].

Let us first estimateMDM
2 (0), MDD

2 (0), and MAE
2 (0), and clarify the main origin

of line broadening. To evaluate the values ofA and |dii+1|, approximate relations
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|A| ' (1g/g)2|J | and |dii+1| ' (1g/g)|J | are used, where1g = g − 2. Using the mean
value ofga, gb, andgc for g, the respective second moments of the present compound are
approximately calculated as

MDM
2 (0) ' 5 × 108 Oe2

MDD
2 (0) ' 2 × 106 Oe2

MAE
2 (0) ' 107 Oe2.

The value ofMcross
2 (0) is found to be comparable toMDD

2 (0).
It is clear from the above thatMDM

2 (0) is extremely larger than the other two. From
equations (10), (22)–(24),1H is roughly estimated to be∼ 10 Oe, as long as only the
perturbationH′ = H′

DD + H′
AE is considered. Therefore, it can be said that the DD

and AE interactions are not the main origin of line broadening in CuGeO3. In contrast,
H′ = H′

DM well explains the value of1Hpp and its angular dependence observed at
high T ; from equations (10) and (18) (or (19)),1Hpp ' 1 kOe is estimated, the order
of which approximately agrees with the observation in spite of the rough estimation
of the value of |dii+1|. Moreover, the experimental result for the angular dependence
of 1Hpp coincides well with (2+ sin2 θ ), as shown in figure 2. That is, the ratio
1Hb

pp/1Hc
pp ' 1Ha

pp/1Hc
pp ' 1.5 obtained experimentally agrees with the value 1.5

calculated from equation (19). This agreement indicates thatdii+1 is perpendicular to the
c-axis. As a result, the value of1Hpp at high T and its angular dependence are well
explained by the DM interaction withdii+1 ⊥ chain axis.

Furthermore, the lineshape at highT is well fitted by the straight line shown in figure 3,
which indicates the Lorentzian of the observed absorption line. If the relaxation of spins
obeyed the diffusion process, the plot should be on or near the dotted line figure 3. The
Lorentzian lineshape thus confirmed also indicates thatH′

DM is the main perturbation in the
present magnetic system.

Next, 1Hpp(T ) shown in figure 1 is discussed. In conventional 1DHAFs with spin-
symmetric perturbations,1H(T ) increases with decreasingT over the short-range ordering
region. However, such an increase is not seen in the present data. With decreasingT ,
1Hpp(T ) decreases monotonically for all directions ofH, and reaches the minimum at
T ' Tsp. The extrapolation of the observed1Hpp(T ) from the paramagnetic region seems
to tend to zero. The experimental result is rather like the theoretical curve forH′

DM given
in figure 5(a). This agreement is another evidence that the EPR line of CuGeO3 is due to
the DM interaction.

SinceMDM
2 (0) is very much larger thanMDD

2 (0) or MAE
2 (0) in the present compound,

the experimental results are typical of the DM interaction. However, the 1DHAFs which
haveH′

DM and satisfy the conditionMDM
2 (0) � MDD

2 (0) (or MAE
2 (0)) are rare. Besides the

present compound, only KCuF3 [15] was established to meet this condition. In most of the
1DHAFs withH′

DM, the value ofMDD
2 (0) (or MAE

2 (0)) is comparable to that ofMDM
2 (0). In

such a case, the dependence of1H on T or θ is not simple. One must therefore remember
that the magnetic dimensionality is not a unique factor to determine1H(T ) or 1H(θ)†.

Finally, theT dependence ofHres is discussed. The experimental result that shows no
change ofHres with T for T > Tsp is consistent with the theory given in subsection 3.4. Thus,

† A typical example is seen in1H(T ) reported in the organic spin–Peierls compounds TTF· MS4C4(CF3)4

(M = Au, Cu) [26]. For T > Tsp, 1H(T ) in the Au compound rather resembles that of CuGeO3: 1H(T )

decreases monotonically with decreasingT towardTsp. On the other hand,1H(T ) in the Cu compound seems
to be almost independent ofT . To understand this difference, the perturbation terms which contribute to the line
broadening in the respective compounds must be clarified.
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theT independence ofHres also proves that the DM interaction is a leading perturbation in
CuGeO3.

As a whole, all factors of the EPR line of CuGeO3, i.e., the value of1H and1H(θ) as
well as the lineshape at highT , 1H(T ), andHres(T ) are found to be completely explained
by the DM interaction withdii+1 ⊥ chain axis, which is the conclusion of the present
experiments and analysis.

5. The present result and crystal symmetry

Concerning the crystal structure of this compound forT > Tsp, the space groupPbmm given
by Völlenkle et al [14] has been accepted so far. However, the present EPR experiments
and analysis strongly suggest the impropriety of this symmetry, because the crystal structure
represented byPbmm does not allow the presence of the DM interaction. That is, the Moriya
rule [27] which gives relations between crystal symmetry and the DM interaction indicates
the absence of the DM interaction in this compound. More precisely, a crystal symmetry
should have no inversion centre halfway between nearest-neighbour magnetic ion sites if
the DM interaction exists. As long as the crystal symmetry given by Völlenkle et al is
employed, the midpoint between nearest-neighbour Cu sites on thec-axis is an inversion
centre, which means thatdii+1 = 0.

However, there are reasons to doubt the crystal symmetry given in [14], which was
reported about three decades ago. At that time, the power of x-ray sources was not so strong
as it is these days. Consequently, the results, of x-ray investigations on various compounds
reported at that time have been corrected subsequently, which is due to improvements in
x-ray sources as well as quality of the respective compounds achieved during the last two or
three decades. For instance, concerning the crystal structure of KCuF3, the space group D18

4h
was accepted for a long time. Several years ago, the EPR investigations [15, 16] suggested
the existence of the DM interaction in this compound, but the crystal symmetry mentioned
above did not allow this interaction. However, recent x-ray diffraction experiments revealed
that the crystal structure of KCuF3 has a symmetry lower than that of D18

4h, and the newly
found structure accounts for the DM interaction [28]. The present compound is probably
not an exception.

According to the Moriya rule [27], the conditiondii+1 ⊥ c restricts the crystal symmetry
allowed for CuGeO3. The crystal symmetry should satisfy at least one of the following rules
for the nearest-neighbour Cu pairs on thec-axis.

(i) There should be a mirror plane which is perpendicular to the Cu–Cu bonding line
and which bisects this bonding line.

(ii) There should be a mirror plane including the Cu–Cu bonding line.
(iii) There should be a twofold rotation axis which is perpendicular to the Cu–Cu bonding

line and which passes through the midpoint of the bonding line.

6. Conclusion

From the present EPR experiments and analysis, the
∑

i dii+1·(Si × Si+1) interaction with
dii+1 ⊥ c-axis between nearest-neighbour Cu spins on thec-axis is clarified to be the main
perturbation term that characterizes the EPR line in CuGeO3. This fact suggests that the
crystal symmetry should be lower than that given by the space groupPbmm which has
been accepted so far.
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The crystal symmetry [29, 30] forT < Tsp derived from the dimerization of Cu–Cu
pairs should also be reexamined. If the DM interaction between the dimerized spins exists,
how does it affect the singlet ground state, as well as the triplet excited state? In response
to the present study, critical reexaminations of the crystal structure of this compound using
high-quality single crystals are now proceeding†.
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